

Journal of Pharmaceutical and Biomedical Analysis 19 (1999) 453-461

Tissue distribution of polaprezinc in rats determined by the double tracer method

Shigeru Furuta *, Michio Suzuki, Seiji Toyama, Masahiro Miwa, Hiroshi Sano

Central Research Laboratories Zeria Pharmaceutical Co., Ltd., 2512-1 Oshikiri, Konan-machi, Osato-gun, Saitama 360-0111, Japan

Received 8 May 1998; received in revised form 2 July 1998; accepted 8 July 1998

Abstract

The tissue distribution of polaprezinc (an insoluble zinc complex of L-carnosine) in rats was studied by the double tracer method using [U-¹⁴C-histidine]-, ⁶⁵Zn-polaprezinc. The ⁶⁵Zn-radioactivity was measured with an auto-gamma counter, and the ¹⁴C containing ⁶⁵Zn was converted to an absolute count according to the calibration curve for quenching with a liquid scintillation counter with the spill-over method. After the administration of ¹⁴C-, ⁶⁵Zn-polaprezinc to rats, the excretion ratio and time courses in the tissues of the ¹⁴C-and ⁶⁵Zn-radioactivity were different each other. We found that polaprezinc was metabolized as endogenous amino acid or zinc after dissociation in the body. The zinc concentration in plasma reached its maximum at 1 h and decreased slowly, returning to the endogenous level at 11 h after the administration of non-labeled polaprezinc. The concentrations of zinc in liver, kidney, testis, prostate, and cerebrum remained rather constant. The replacement ratios of ⁶⁵Zn to zinc in the tissues at its maximum percentage were 40% in plasma, 16–20% in liver, kidney, blood, and prostate. The low replacement ratios in testis and cerebrum (2–3%) suggested that zinc uptakes in testis and brain were regulated by the blood-testis-barrier and blood-brain-barrier, respectively. © 1999 Elsevier Science B.V. All rights reserved.

Keywords: Polaprezinc; L-Carnosine; Zinc; Tissue distribution; Double tracer method

1. Introduction

Polaprezinc is a zinc complex of carnosine (β -alanyl-L-histidine) [1] that exhibits marked anti-ulcer activity by acting directly on the gastric mucosa [2–4]. Polaprezinc was found to be retained as the complex form in the stomach longer

and to adhere to the ulcerous sites more than did a mixture of zinc and L-carnosine for pharmacological action [5]. Polaprezinc is then dissociated to zinc and L-carnosine in the gastrointestinal tract as a function of time, and these components are further metabolized along their respective pathways in the body [6–8]. The tissue distribution of a drug is closely correlated with toxicological responses to the drug; a radiolabeled compound is useful to clarify tissue distribution, which is also important in the establishment of a

^{*} Corresponding author.

^{0731-7085/99/\$ -} see front matter © 1999 Elsevier Science B.V. All rights reserved. PII: S0731-7085(98)00236-2

drug's disposition. In this study, we investigated the disposition of polaprezinc after oral administration to intact rats and discussed the toxicology and physiological roll of L-carnosine and zinc in tissues. Therefore, we synthesized [U-¹⁴Chistidine]-, ⁶⁵Zn-polaprezinc, which labels L-carnosine as ¹⁴C and zinc as ⁶⁵Zn, respectively, and determined the tissue levels of radioactivity using the double tracer method.

Furthermore, the distribution of zinc after the administration of non-labeled polaprezinc was compared to that of ⁶⁵Zn to clarify the turnover of zinc, because zinc is distributed to all tissues, and the tissue concentrations of zinc are maintained by specific homeostatic mechanisms [9,10].

2. Materials and methods

2.1. Chemicals

Unlabeled polaprezinc and L-carnosine were synthesized by Hamari Chemicals (Tokyo, Japan). [U-¹⁴C-Histidine]-polaprezinc (¹⁴C-polaprezinc) and ⁶⁵Zn-polaprezinc were synthesized by Nemoto and Co. (Tokyo) and Amersham International (Buckinghamshire, UK), as shown in Fig. 1. ⁶⁵ZnCl₂ hydrochloride solution was purchased from Du Pont NEN Research Products (Boston, MA). The ¹⁴C-polaprezinc had the specific radioactivity level of 26.8 MBq mmol⁻¹ and a radiochemical purity of 96.6%. The ⁶⁵Zn-polaprezinc had specific radioactivity levels of 36.4 MBq mmol⁻¹ and 608.2 MBq mmol⁻¹, and the ⁶⁵ZnCl₂ had a specific radioactivity level of 47.1

MBq mmol⁻¹. The quenching standards of ¹⁴C were obtained from Packard Instrument (Maiden, CT).

2.2. Measurement of radioactivity

The measurement of the scintillation spectrum was performed with a liquid scintillation spectrophotometer (TRI CARB Type MINAXI, Packard Instrument) connected to a multi-channel analyzer for 4096 channels (SEIKO EG&G, Tokyo). The output pulses from the spectrometer to the multi-channel analyzer were picked up from the coincidence circuit. The ¹⁴Cradioactivity was measured by a liquid scintillation spectrophotometer (TRI CARB Type 4640, Packard Instrument), and the ⁶⁵Zn-radioactivity was measured by an auto-gamma counter (Type 5780, Packard Instrument).

2.3. Liquid scintillation spectra of ${}^{14}C$ and ${}^{65}Zn$

The liquid scintillation spectra were measured with the ¹⁴C-quenched standard (124 500 dpm per vial) for ¹⁴C, and with the ⁶⁵Zn-quenched standard (200 000 dpm per vial) made from ⁶⁵ZnCl₂ added to 10 ml of Aquasol-2 (Du Pont NEN Research Products).

2.4. Efficiency correlation curve for ${}^{14}C$ based on quenching

The quenching standard for 65 Zn (65 827 dpm per vial) was prepared by adding 0.1 ml of a 0.1 N

Fig. 1. Chemical structures of ¹⁴C-polaprezinc (left) and ⁶⁵Zn-polaprezinc (right).

HCl solution of ⁶⁵Zn-polaprezinc to biological samples (blood 0.1 or 0.2 ml, liver and lung both 200 mg). These were dissolved in 2 ml of soluene-350 (Packard), and to the samples of blood and liver was also added 0.4 ml of the saturated benzoyl peroxide in toluene, and 10 ml of Hionic flow (Packard). Each sample was evaluated by the analytical program of the ³H- and ¹⁴C-double labeling program with an automatic efficiency control (AEC) system [11], and the efficiency correlation curves for quenching were thus determined. The absolute radioactivity of ¹⁴C was obtained by the following equation:

$C = (n \mathbf{B} \cdot \mathbf{EZA} - n\mathbf{A} \mathbf{EZB}) / (\mathbf{ECB} \cdot \mathbf{EZA})$

where C is the absolute radioactivity of ¹⁴C, nA and nB are total counts in regions A and B, and ECB, EZA, and EZB are the efficiency values of ¹⁴C in region B, ⁶⁵Zn in region A, and ⁶⁵Zn in region B, respectively. The regions of measurement energy were automatically set at 0–12 keV for region A and at 12–156 keV for region B.

We examined the effect of the ${}^{65}Zn$ on the measurement of ${}^{14}C$ in the biological samples (blood 0.1 ml, liver and stomach both 200 mg) treated as described above with the addition of 0.1 ml of the standard solution of ${}^{14}C$ (166 dpm) and a 0.1 N HCl solution of ${}^{65}Zn$ -polaprezinc (733 dpm). The ${}^{14}C$ -radioactivity of these samples was measured by the scintillation counter using the spill-over method with the efficiency correlation curve of ${}^{14}C$ based on quenching. The accuracy was calculated from the difference between the found and spiked levels of ${}^{14}C$ -radioactivity divided by the spiked ${}^{14}C$ -radioactivity.

2.5. Method of administration

Male SPF rats of the Sprague–Dawley strain (7–8 weeks of age, body weight: ≈ 250 g) were purchased from Charles River Japan (Atsugi, Japan). Solid laboratory food (Charles River CRF-1) was purchased from Oriental Yeast (Tokyo), and the zinc content was 52 µg g⁻¹ of the diet. The rats were fasted for 16 h prior to the dosing but were allowed free access to water, and foods were given at 8 h after the dosing. The ¹⁴C-polaprezinc and ⁶⁵Zn-polaprezinc were mixed

together and suspended in a 0.5% sodium carboxymethyl cellulose solution with the use of an agate mortar, and administered orally at a dose of 171.6 µmol (50 mg) kg⁻¹ (¹⁴C-, ⁶⁵Zn-polaprezinc). The specific radioactivity was adjusted by the addition of non-radioactive polaprezinc; the radioactivity was ≈ 862.1 kBq ml⁻¹ for ¹⁴C-polaprezinc and ≈ 1.2 Mbq ml⁻¹ for ⁶⁵Znpolaprezinc.

Rats were exanguinated from the abdominal aorta under ether anesthesia with the use of a heparin-treated syringe. The cerebrum, liver, kidneys, stomach, testes, and prostate were excised and weighed. The tissue samples were cut and small pieces were obtained (≈ 200 mg). Plasma samples were obtained from the blood samples after centrifugation ($3000 \times g$, 10 min). Each sample was dissolved in 2 ml of Soluene-350, and the radioactivity of 65 Zn and 14 C was measured as described above.

For the measurement of the zinc concentration in the tissues, non-labeled polaprezinc was administered orally at a dose of 171.6 µmol (50 mg) kg⁻¹, and the tissue samples obtained as described above were ashed; the zinc concentration was measured at 213.8 nm by an atomic absorption spectrometer (Model 180-60, Hitachi, Tokyo) with a hollow cathode (Zn) lamp [12]. The area under the concentration-time curve until 24 h after administration (AUC_{0-24 h}) was calculated by the trapezoidal method. The replacement ratio in each tissue was calculated from the AUC_{0-24 h} of ⁶⁵Zn divided by the AUC_{0-24h} of zinc after the administration of polaprezinc.

3. Results

3.1. Quenching and counting efficiency of ${}^{14}C$ and ${}^{65}Zn$

We investigated the beta decay spectra of ${}^{14}C$ and ${}^{65}Zn$ in the liquid scintillation counter. The spectrum of ${}^{14}C$, the higher energy radionuclide, was low and flat over the 0–156 keV range. In contrast, the spectrum of ${}^{65}Zn$, the lower energy radionuclide, was sharp, peaking at 0–12 keV.

Fig. 2. Efficiency correlation curves of ¹⁴C-radioactivity and ⁶⁵Zn-radioactivity for quenching in regions A and B.

The quenching and counting efficiency data of ¹⁴C and ⁶⁵Zn in regions A and B are shown in Fig. 2. The efficiency of ⁶⁵Zn was increased proportionally with spectral index of the external standard (SIE) in region A, and was < 5% in region B. The efficiency of ¹⁴C < 15% in region A, but was > 70% in region B when the SIE was > 260. The coefficients of variation of ¹⁴C and ⁶⁵Zn in regions A and B obtained three times in the same samples by the efficiency correlation quenching curve were < 5%.

3.2. Measurement precision of ${}^{14}C$ by the spill-over method in the presence of ${}^{65}Zn$

The measurement precision of ¹⁴C-radioactivity (166 dpm) in the stomach, liver, and blood samples in the presence of ⁶⁵Zn (733 dpm) by the spill-over method is shown in Table 1. The values were similar to the ¹⁴C-radioactivity added; the accuracy was lower than 6.1%. The effects of the ⁶⁵Zn-radioactivities on the analytical precision of ¹⁴C are shown in Table 2. The observed values of

¹⁴C were overestimated when the ⁶⁵Zn radioactivities were 100 times > ¹⁴C radioactivities. However, when the ⁶⁵Zn radioactivities were 100 times < ¹⁴C radioactivities, ⁶⁵Zn did not interfere with the measurement of ¹⁴C, and the observed values were correct.

Table 1

The measurement of precision in the assay of $^{14}\mathrm{C}\xspace$ radioactivity in tissue samples containing $^{65}\mathrm{Zn}^a$

Sample	SIE	¹⁴ C radioactivity found (dpm)	Accuracy (%)
Blank	507	158	4.8
Blank	503	159	4.4
Stomach	424	156	6.0
Stomach	391	167	0.5
Liver	315	168	0.9
Liver	259	160	3.8
Blood	271	156	6.1
Blood	274	158	4.8
Mean		160	3.9
C.V (%)		2.9	

^a Each sample contained ¹⁴C (166 dpm) and ⁶⁵Zn (733 dpm).

Table 2			
The effect of ⁶⁵ Zn-radioactivity on	the analysis of	¹⁴ C-radioactivity in	tissue samples ^a

⁶⁵ Zn-radioactivity added (Υ dpm)	¹⁴ C-radioactivity added (β dpm)	¹⁴ C-radioactivity found (β dpm)	Accuracy (%)	Analysis time (min)
397		81 (4.2) ^b	3.3	10
733	81	82 (8.8)	6.2	10
1450		79 (5.8)	5.8	10
397		156 (5.8)	5.8	10
733	166	160 (2.9)	3.9	10
1450		149 (10.3)	10.3	10
1367		318 (4.8)	4.9	2
8440	329	321 (10.7)	7.7	2
33 927		322 (27.5)	18.5	2
1376		672 (3.3)	4.6	2
8440	702	680 (4.7)	4.5	2
33927		727 (12.9)	11.7	2
1376		1376 (2.5)	3.0	2
8440	1335	1407 (5.0)	6.4	2
33927		1393 (6.5)	11.13	2

^a The tissue samples were prepared from blood, liver, and lung.

^b Data are the mean (coefficient of variation, %), (n = 8).

3.3. Distribution of ¹⁴C-, ⁶⁵Zn-polaprezinc

The tissue distribution of ¹⁴C-, ⁶⁵Zn-polaprezinc in the rats is shown in Fig. 3. The radioactivity of ¹⁴C in each tissue reached the maximum concentration (C_{max}) at 4-8 h after administration. The radioactivity of 65 Zn reached the C_{max} at 4 h in the plasma and blood, and at 8 h in the liver and kidney. The radioactivity of ⁶⁵Zn in the prostate, testis, and cerebrum showed an increase as a function of time. The concentration of ⁶⁵Zn in each tissue was lower than that of ¹⁴C. The zinc concentration in the plasma reached the C_{max} at 1 h and decreased slowly, returning to the endogenous level at 11 h after the administration of non-labeled polaprezinc. In other tissues, the zinc concentration changed only slightly after the oral administration.

4. Discussion

The double tracer method using ¹⁴C-, ⁶⁵Zn-polaprezinc (which is labeled by ¹⁴C in the Lcarnosine moiety and labeled by ⁶⁵Zn of the zinc moiety) was useful in the present study, because the results of zinc and L-carnosine could be obtained from the same experiment at once. However, during the measurement of the pulse wave height and counts of ¹⁴C and ⁶⁵Zn with the liquid scintillation spectrometer, we found that the spectra of ¹⁴C and ⁶⁵Zn were crossed and interfered with each other. The multi-equation method [13] and the spill-over method [14] are used for the measurement of the mixture of two radio-labeled nuclei with a liquid scintillation spectrometer. The spill-over method uses the difference between the ³H and ¹⁴C spectra shapes. Since the ⁶⁵Zn spectrum is similar to the ³H spectrum, we suspected that the spill-over method would be useful for the separate analyses of ¹⁴C- and ⁶⁵Zn-radioactivity by a liquid scintillation spectrometer. In the examination of tissue distribution, each tissue sample was found to have its own color of quenching, and we investigated the relationship between the quenching and efficiency by the measurement of the quenching standard of ¹⁴C and ⁶⁵Zn. The SIE is in inverse proportion to quenching; it is the index produced by analyzing the spectral distribution of the external standard. The efficiency of the ⁶⁵Zn-radioactivity measurement was proportional to SIE under region A (the low energy area), and was very low under region B (the high energy area). The efficiency of the ¹⁴C-radioactivity measurement was $\approx 10\%$ under region A, but was more than 70% under region B at high SIE values (> 260), which is 20–30 times higher than those of ⁶⁵Zn. Based on these data, we speculated that the measurement of ¹⁴C-radioactivity at region B by the liquid scintillation spectrometer was slightly affected by the ⁶⁵Zn-radioactivity. We obtained the absolute amount of ¹⁴C-radioactivity by the measurement of ¹⁴C-radioactivity on region B, corrected with the efficiency correlation curve for quenching, by the spill-over method.

In our examination of the effect of 65 Zn on the measurement of 14 C in the various quenched biological samples such as blood, liver, and stomach, there were no effects of quenching or of 65 Zn; the accuracy of the measurement of 14 C was < 6.1%. Among the samples in which the ratio of 14 C: 65 Zn

was changed, the accuracy of measurement was less than 10.3% in the samples in which the ⁶⁵Znradioactivity was not more than 20 times the ¹⁴C-radioactivity. The samples which had more than 300 dpm of ¹⁴C-radioactivity were measured accurately with a measurement period of 2 min. Webb et al. [15] measured the ⁶⁵Zn-radioactivity and Cousins et al. [16] measured both ¹⁴C- and ⁶⁵Zn-radioactivity with a liquid scintillation spectrometer. Since the present maximum of efficiency of ⁶⁵Zn in region A was only 42.7% (Fig. 2), ⁶⁵Zn was more influenced by quenching than ^{115m}Cd or ²⁰³Hg [16]. It is difficult to measure the ⁶⁵Zn-radioactivity in high-quenching samples such as blood or liver, because the efficiency of ⁶⁵Zn-radioactivity is decreased greatly by the mixed ¹⁴Cradioactivity. Therefore, in the present study, we first measured the ⁶⁵Zn-radioactivity with a gamma-counter, and then more accurately measured the ¹⁴C-radioactivity by the spill-over method with a liquid scintillation counter.

Fig. 3. Tissue distribution of polaprezinc after oral administration to rats (171.6 μ mol (50 mg) kg⁻¹). Each point represents the mean \pm SD: (\bigcirc) ¹⁴C-radioactivity (n = 3), (\bullet) ⁶⁵Zn-radioactivity (n = 3), (\bullet) Zinc (n = 5).

Keplacement ratios were calculated from $AUC_{0,24}$ of ZII divided by $AUC_{0,24}$ of zinc after administration	placement ratios were calculated from AUC _{0-24 b} of ⁶⁵ Zn divided by AUC _{0-24 b} of zinc after ad	lministration
--	---	---------------

^b Data are the mean \pm SD (¹⁴C and ⁶⁵Zn: n = 3, Zinc: n = 5).

After oral administration of ¹⁴C-, ⁶⁵Zn-polaprezinc to rats, the distributions of ¹⁴C- and ⁶⁵Zn-radioactivity in each tissue showed independence. We reported that polaprezinc administered was not dissociated immediately, and was present in its complex form in the stomach at 30 min after administration [5,8]. After that, most of dose of polaprezinc was dissociated to zinc and Lcarnosine in the gastrointestinal tract as a function of time [8], we could detect the radioactivity of ¹⁴C and ⁶⁵Zn as L-carnosine and zinc, respectively. Furthermore, L-carnosine was metabolized rapidly to L-histidine and β -alanine in rats [17], we could not detect L-carnosine in plasma after administration of polaprezinc [18]. The ¹⁴C-radioactivity remained in the tissues at 24 h after administration, it suggested that L-histidine as metabolites of L-carnosine was incorporated by endogenous high molecular weight substances

such as protein [17]. We reported the absorption of ⁶⁵ZnSO₄ in rats previously, the times of maximum concentration (T_{max}) of ⁶⁵Zn-radioactivity in plasma were 1 h of ⁶⁵ZnSO₄ [8], and 4 h of polaprezinc after oral administration to rats, respectively. It suggested that the absorption of zinc after administration of polaprezinc was slowly than that of ⁶⁵ZnSO₄, because it requires the dissociation time. The ⁶⁵Zn-radioactivity showed a high distribution in the liver and kidney, and showed time-dependent increases in the prostate, testis, and cerebrum. The ⁶⁵Zn replacement ratio was large (40%) in the plasma, 16-20% in the liver, kidney, blood, and prostate, and very low in the testis and cerebrum (Table 3). The zinc is an essential trace metal widely distributed to tissues [19]. The zinc of polaprezinc seems to be taken up into each tissue and metabolized with the turnover of endogenous zinc.

Table 3							
Pharmokinetic parameters	of polaprezinc	after oral	administration	to rats	$(171.6 \ \mu \ mol \ \phi)$	(50 mg) kg ⁻¹)

Tissue	Nuclide	$T_{\rm max}$ (h)	C_{max} (nmol eq. ml ⁻¹ or g ⁻¹)	$AUC_{0-24 h}$ (ng eq. h ml ⁻¹)	Replacement ratio (%) ^a
Plasma	¹⁴ C ⁶⁵ Zn Zinc	8 4 1	$\begin{array}{c} 161.15 \pm 17.51^{\rm b} \\ 27.00 \pm 7.84 \\ 59.35 \pm 5.66 \end{array}$	3.71.94 231.62 569.07	40.70
Blood	¹⁴ C ⁶⁵ Zn Zinc	8 4 0.5	$\begin{array}{c} 233.53 \pm 22.00 \\ 18.54 \pm 4.21 \\ 71.29 \pm 4.28 \end{array}$	4197.15 227.74 1344.46	16.94
Cerebrum	¹⁴ C ⁶⁵ Zn Zinc	4 24 1	$78.14 \pm 8.25 5.21 \pm 1.14 232.94 \pm 33.40$	1489.47 87.62 4292.51	2.04
Liver	¹⁴ C ⁶⁵ Zn Zinc	4 8 8	$\begin{array}{c} 673.17 \pm 92.16 \\ 168.47 \pm 17.78 \\ 671.99 \pm 243.60 \end{array}$	11670.7 2727.54 13568.70	20.10
Kidney	¹⁴ C ⁶⁵ Zn Zinc	8 8 8	$\begin{array}{c} 283.81 \pm 7.42 \\ 91.78 \pm 8.91 \\ 387.97 \pm 37.87 \end{array}$	5387.11 1713.58 8448.81	20.28
Prostate	¹⁴ C ⁶⁵ Zn Zinc	8 24 24	$\begin{array}{c} 290.50 \pm 49.59 \\ 36.88 \pm 18.47 \\ 500.08 \pm 185.71 \end{array}$	4711.06 616.53 3826.25	16.11
Testis	¹⁴ C ⁶⁵ Zn Zinc	8 24 1	$\begin{array}{c} 83.89 \pm 6.35 \\ 12.29 \pm 3.14 \\ 350.58 \pm 12.93 \end{array}$	1611.99 239.55 7376.82	3.25

The zinc was absorbed by carrier-mediated process, as is copper, and it was regulated by the concentration of zinc in the intestine [20]. The testis and brain have a blood-testis-barrier [21] and blood-brain-barrier [22], respectively, which act to regulate the uptake of many substances into these tissues similar to the intestine. The LD_{50} values of polaprezinc was 8441 mg kg⁻¹ in rats single oral administration study, it seemed safety though it include heavy metal, zinc [23]. Each tissue could prevented to the exposure of zinc in excess by the barriers system. These barriers regulate the zinc uptake homeostatically, and the replacement ratios of ⁶⁵Zn in the rat testis and cerebrum were thus found to be very low. In addition, time-dependent increases in the ⁶⁵Zn-radioactivity were observed in the prostate, testis and cerebrum. These results suggest that zinc has an important role in the production of sperm and is an essential metal in the regular functioning of the brain. In this study, we investigated the disposition of polaprezinc in intact rats. However, the physiological condition about the turnover or barrier system of zinc may be changed in the ulcer model rats. Therfore, it will be necessary to study using the ulcer model rats for discussion about the pharmacological response of polaprezinc.

5. Conclusion

After the administration of ¹⁴C-, ⁶⁵Zn-polaprezinc to rats, the excretion ratio and time courses in the tissues of the ¹⁴C-and ⁶⁵Zn-radioactivity were different each other. We found that polaprezinc was metabolized as endogenous amino acid or zinc after dissociation in the body. The concentrations of zinc in liver, kidney, testis, prostate, and cerebrum remained rather constant.

The replacement ratios of 65 Zn to zinc in the tissues at its maximum percentage were 40% in plasma, 16–20% in liver, kidney, blood, and prostate. The low replacement ratios in testis and cerebrum (2–3%) suggested that zinc uptakes in testis and brain were regulated by the blood-testisbarrier and blood-brain-barrier, respectively.

References

- [1] T. Matsukura, T. Takahashi, Y. Nishimura, H. Sawada, K. Shibata, Characterization of crystalline L-carnosine Zn(II) complex (Z-103), a novel anti-gastric ulcer agent: tautomeric change of imidazole moiety upon complexation, Chem. Pharm. Bull. 38 (1990) 3140-3146.
- [2] T. Arakawa, H. Satou, A. Nakamura, et al., Effects of zinc L-carnosine on gastric mucosal and cell damage caused by ethanol in rats, Dig. Dis. Sci. 35 (1990) 559– 566.
- [3] M. Ito, T. Tanaka, Y. Suzuki, Effect on N-(3-aminopropionyl)-L-histidine zinc (Z-103) on healing and hydrocortisone-induced relapse of acetic acid ulcers in rats with limited food-intake-time, Jpn. J. Pharmacol. 52 (1990) 513–521.
- [4] M. Seiki, S. Ueki, Y. Tanaka, et al., Studies on the anti-ulcer effects of a new compound, zinc L-carnosine (Z-103), Folia Pharmacol. Jpn. 95 (1990) 257–269.
- [5] S. Furuta, S. Toyama, M. Miwa, T. Itabashi, H. Sano, T. Yoneta, Residence time of polaprezinc (zinc L-carnosine in the rat stomach and adhesiveness to ulcerous sites, Jpn. J. Pharmacol. 67 (1995) 271–278.
- [6] H. Sano, S. Furuta, S. Toyama, et al., Study on the metabolic fate of catena-(S)-[μ-[N^{*}-(3-aminopropionyl) histidinato(2-)-N¹,N²,O:N^{*}]-zinc], 1st communication: absorption; distribution; metabolism; and excretion after single administration to rats, Arzneim.Forsch. Drug Res. 41 (1991) 965–975.
- [7] S. Furuta, S. Toyama, M. Miwa, H. Sano, Absorption property and disposition in gastrointestinal tract of zinc L-carnosine (Z-103), J. Pharm. Dyn. 15 (1992) S30.
- [8] S. Furuta, S. Toyama, M. Miwa, H. Sano, Disposition of polaprezinc (zinc L-carnosine complex) in rat gastro-intestinal tract and effect of cimetidine on its adhesion to gastric tissues, J. Pharm. Pharmacol. 47 (1995) 632–636.
- [9] N.T. Davies, Studies on the absorption of zinc by rat intestine, Br. J. Nutr. 43 (1980) 189–203.
- [10] M.J. Jackson, D.A. Jones, R.H. Edwards, Zinc absorption in the rat, Br. J. Nutr. 46 (1981) 15–27.
- [11] TRI-CARB 4000 Series Liquid Scintillation Systems Operation Manual. Packard Instrument Co., Inc. 1983.
- [12] S. Toyama, S. Furuta, M. Miwa, M. Suzuki, H. Sano, K. Matsuda, Study on the metabolic fate of catena-(S)-[µ-[N^α-(3-aminopropionyl) histidinato(2-)-N¹,N²,O:N^τ]zinc], 2nd communication: absorption; distribution; metabolism; and excretion after repeated administration, Arzneim. Forsch. Drug Res. 41 (1991) 976–983.
- [13] G.T. Okita, J.J. Kabara, F. Richardson, G.B. Leroy, Assaying compounds containing ³H and ¹⁴C, Nucleonics 15 (1957) 111–114.
- [14] A. Viotti, R. Nucca, Double labeling: computation program for a desk-top calculator, Anal. Bio. 65 (1975) 556–560.
- [15] M. Webb, H. Creed, S. Atkinson, Influence of zinc on protein synthesis by polyribosomes from the dog prostate and dorsolateral lobes of the rat prostate, Bio. Biophys. Acta 324 (1973) 143–155.

- [16] R.J. Cousins, R.A. Wynbeen, K.S. Squibb, M.P. Richards, Double label counting of metal nuclides with ³H or ¹⁴C by liquid scintillation counting, Anal. Bio. 65 (1975) 412–417.
- [17] S. Furuta, S. Toyama, M. Miwa, H. Sano, Studies on the metabolic fate of L-carnosine in rats and humans, Xenobiot. Metab. Dispos. 8 (1993) 1057–1063.
- [18] S. Furuta, S. Toyama, M. Miwa, Y. Ikeda, H. Sano, K. Matsuda, Study on the metabolic fate of catena-(S)-[µ-[N[∞]-(3-aminopropionyl) histidinato(2-)-N¹,N²,O:N^τ]-zinc], 4th communication: disposition of zinc and amino acids in rats; dogs; and monkeys, Arzneim. Forsch. Drug Res. 41 (1991) 992–995.
- [19] B.L. Vallee, K.H. Falchuk, The biochemical basis of zinc physiology, Physiol. Rev. 73 (1993) 79–118.

- [20] S. Furuta, S. Toyama, H. Sano, Absorption of polaprezinc (zinc L-carnosine complex) by an everted sac method, Xenobiotica 24 (1994) 1085–1094.
- [21] L.D. Russel, R.W. Peterson, Sertoricell junction : morphological and functional correlates, Int. Rev. Cytol. 94 (1985) 177–211.
- [22] G.W. Goldstein, Endothelial cell-astrocyte interactions: a cellular mod-brain bardel of the bloorier, Ann. New York Acad. Sci. 529 (1988) 1083–1090.
- [23] K. Matsuda, H. Shibata, T. Morikami, T. Kato, F. Aruga, Single dose toxicity study on catena-(S)-[μ-[N^α-(3aminopropionyl) histidinato(2-)-N¹,N²,O:N^τ]-zinc] in mice and rats, Arzneim. Forsch. Drug Res. 41 (1991) 1033–1035.